4 research outputs found

    Structural assessment under uncertain parameters via the interval optimization method using the slime mold algorithm

    Get PDF
    Damage detection of civil and mechanical structures based on measured modal parameters using model updating schemes has received increasing attention in recent years. In this study, for uncertainty-oriented damage identification, a non-probabilistic structural damage identification (NSDI) technique based on an optimization algorithm and interval mathematics is proposed. In order to take into account the uncertainty quantification, the elastic modulus is described as unknown-but-bounded interval values and the proposed new scheme determines the upper and lower bounds of the damage index. In this method, the interval bounds can provide supports for structural health diagnosis under uncertain conditions by considering the uncertainties in the variables of optimization algorithm. The model updating scheme is subsequently used to predict the interval-bound of the Elemental Stiffness Parameter (ESP). The slime mold algorithm (SMA) is used as the main algorithm for model updating. In addition, in this study, an enhanced variant of SMA (ESMA) is developed, which removes unchanged variables after a defined number of iterations. The method is implemented on three well-known numerical examples in the domain of structural health monitoring under single damage and multi-damage scenarios with different degrees of uncertainty. The results show that the proposed NSDI methodology has reduced computation time, by at least 30%, in comparison with the probabilistic methods. Furthermore, ESMA has the capability to detect damaged elements with higher certainty and lower computation cost in comparison with the original SMA..Peer ReviewedPostprint (published version

    A novel MRE adaptive seismic isolator using curvelet transform identification

    Get PDF
    Magnetorheological elastomeric (MRE) material is a novel type of material that can adap-tively change the rheological property rapidly, continuously, and reversibly when subjected to real-time external magnetic field. These new type of MRE materials can be developed by employing various schemes, for instance by mixing carbon nanotubes or acetone contents during the curing process which produces functionalized multiwall carbon nanotubes (MWCNTs). In order to study the mechanical and magnetic effects of this material, for potential application in seismic isolation, in this paper, different mathematical models of magnetorheological elastomers are analyzed and modified based on the reported studies on traditional magnetorheological elastomer. In this regard, a new feature identification method, via utilizing curvelet analysis, is proposed to make a multi-scale constituent analysis and subsequently a comparison between magnetorheological elastomer nanocomposite and traditional magnetorheological elastomers in a microscopic level. Furthermore, by using this “smart” material as the laminated core structure of an adaptive base isolation system, magnetic circuit analysis is numerically conducted for both complete and incomplete designs. Magnetic distribution of different laminated magnetorheological layers is discussed when the isolator is under compressive preloading and lateral shear loading. For a proof of concept study, a scaled building structure is established with the proposed isolation device. The dynamic performance of this isolated structure is analyzed by using a newly developed reaching law sliding mode control and Radial Basis Function (RBF) adaptive sliding mode control schemes. Transmissibility of the structural system is evaluated to assess its adaptability, controllability and nonlinearity. As the findings in this study show, it is promising that the structure can achieve its optimal and adaptive performance by designing an isolator with this adaptive material whose magnetic and mechanical properties are functionally enhanced as compared with traditional isolation devices. The adaptive control algorithm presented in this research can transiently suppress and protect the structure against non-stationary disturbances in the real time

    From model-driven to data-driven : a review of hysteresis modeling in structural and mechanical systems

    Get PDF
    Hysteresis is a natural phenomenon that widely exists in structural and mechanical systems. The characteristics of structural hysteretic behaviors are complicated. Therefore, numerous methods have been developed to describe hysteresis. In this paper, a review of the available hysteretic modeling methods is carried out. Such methods are divided into: a) model-driven and b) datadriven methods. The model-driven method uses parameter identification to determine parameters. Three types of parametric models are introduced including polynomial models, differential based models, and operator based models. Four algorithms as least mean square error algorithm, Kalman filter algorithm, metaheuristic algorithms, and Bayesian estimation are presented to realize parameter identification. The data-driven method utilizes universal mathematical models to describe hysteretic behavior. Regression model, artificial neural network, least square support vector machine, and deep learning are introduced in turn as the classical data-driven methods. Model-data driven hybrid methods are also discussed to make up for the shortcomings of the two methods. Based on a multi-dimensional evaluation, the existing problems and open challenges of different hysteresis modeling methods are discussed. Some possible research directions about hysteresis description are given in the final section

    Uncertainty Handling in Structural Damage Detection via Non-Probabilistic Meta-Models and Interval Mathematics, a Data-Analytics Approach

    No full text
    Recent advancements in sensor technology have resulted in the collection of massive amounts of measured data from the structures that are being monitored. However, these data include inherent measurement errors that often cause the assessment of quantitative damage to be ill-conditioned. Attempts to incorporate a probabilistic method into a model have provided promising solutions to this problem by considering the uncertainties as random variables, mostly modeled with Gaussian probability distribution. However, the success of probabilistic methods is limited due the lack of adequate information required to obtain an unbiased probabilistic distribution of uncertainties. Moreover, the probabilistic surrogate models involve complicated and expensive computations, especially when generating output data. In this study, a non-probabilistic surrogate model based on wavelet weighted least squares support vector machine (WWLS-SVM) is proposed to address the problem of uncertainty in vibration-based damage detection. The input data for WWLS-SVM consists of selected wavelet packet decomposition (WPD) features of the structural response signals, and the output is the Young’s modulus of structural elements. This method calculates the changes in the lower and upper boundaries of Young’s modulus based on an interval analysis method. Considering the uncertainties in the input parameters, the surrogate model is used to predict this interval-bound output. The proposed approach is applied to detect simulated damage in the four-story benchmark structure of the IASC-ASCE SHM group. The results show that the performance of the proposed method is superior to that of the direct finite element model in the uncertainty-based damage detection of structures and requires less computational effort
    corecore